PEP 428 – The pathlib module – object-oriented filesystem paths
- PEP
- 428
- Title
- The pathlib module – object-oriented filesystem paths
- Author
- Antoine Pitrou <solipsis at pitrou.net>
- Status
- Final
- Type
- Standards Track
- Created
- 30-Jul-2012
- Python-Version
- 3.4
- Post-History
- 05-Oct-2012
- Resolution
- Python-Dev
Abstract
This PEP proposes the inclusion of a third-party module, pathlib, in the standard library. The inclusion is proposed under the provisional label, as described in PEP 411. Therefore, API changes can be done, either as part of the PEP process, or after acceptance in the standard library (and until the provisional label is removed).
The aim of this library is to provide a simple hierarchy of classes to handle filesystem paths and the common operations users do over them.
Implementation
The implementation of this proposal is tracked in the pep428
branch
of pathlib’s Mercurial repository.
Why an object-oriented API
The rationale to represent filesystem paths using dedicated classes is the same as for other kinds of stateless objects, such as dates, times or IP addresses. Python has been slowly moving away from strictly replicating the C language’s APIs to providing better, more helpful abstractions around all kinds of common functionality. Even if this PEP isn’t accepted, it is likely that another form of filesystem handling abstraction will be adopted one day into the standard library.
Indeed, many people will prefer handling dates and times using the high-level
objects provided by the datetime
module, rather than using numeric
timestamps and the time
module API. Moreover, using a dedicated class
allows to enable desirable behaviours by default, for example the case
insensitivity of Windows paths.
Proposal
Class hierarchy
The pathlib module implements a simple hierarchy of classes:
+----------+
| |
---------| PurePath |--------
| | | |
| +----------+ |
| | |
| | |
v | v
+---------------+ | +-----------------+
| | | | |
| PurePosixPath | | | PureWindowsPath |
| | | | |
+---------------+ | +-----------------+
| v |
| +------+ |
| | | |
| -------| Path |------ |
| | | | | |
| | +------+ | |
| | | |
| | | |
v v v v
+-----------+ +-------------+
| | | |
| PosixPath | | WindowsPath |
| | | |
+-----------+ +-------------+
This hierarchy divides path classes along two dimensions:
- a path class can be either pure or concrete: pure classes support only operations that don’t need to do any actual I/O, which are most path manipulation operations; concrete classes support all the operations of pure classes, plus operations that do I/O.
- a path class is of a given flavour according to the kind of operating system paths it represents. pathlib implements two flavours: Windows paths for the filesystem semantics embodied in Windows systems, POSIX paths for other systems.
Any pure class can be instantiated on any system: for example, you can
manipulate PurePosixPath
objects under Windows, PureWindowsPath
objects under Unix, and so on. However, concrete classes can only be
instantiated on a matching system: indeed, it would be error-prone to start
doing I/O with WindowsPath
objects under Unix, or vice-versa.
Furthermore, there are two base classes which also act as system-dependent
factories: PurePath
will instantiate either a PurePosixPath
or a
PureWindowsPath
depending on the operating system. Similarly, Path
will instantiate either a PosixPath
or a WindowsPath
.
It is expected that, in most uses, using the Path
class is adequate,
which is why it has the shortest name of all.
No confusion with builtins
In this proposal, the path classes do not derive from a builtin type. This
contrasts with some other Path class proposals which were derived from
str
. They also do not pretend to implement the sequence protocol:
if you want a path to act as a sequence, you have to lookup a dedicated
attribute (the parts
attribute).
The key reasoning behind not inheriting from str
is to prevent accidentally
performing operations with a string representing a path and a string that
doesn’t, e.g. path + an_accident
. Since operations with a string will not
necessarily lead to a valid or expected file system path, “explicit is better
than implicit” by avoiding accidental operations with strings by not
subclassing it. A blog post by a Python core developer goes into more detail
on the reasons behind this specific design decision.
Immutability
Path objects are immutable, which makes them hashable and also prevents a class of programming errors.
Sane behaviour
Little of the functionality from os.path is reused. Many os.path functions
are tied by backwards compatibility to confusing or plain wrong behaviour
(for example, the fact that os.path.abspath()
simplifies “..” path
components without resolving symlinks first).
Comparisons
Paths of the same flavour are comparable and orderable, whether pure or not:
>>> PurePosixPath('a') == PurePosixPath('b')
False
>>> PurePosixPath('a') < PurePosixPath('b')
True
>>> PurePosixPath('a') == PosixPath('a')
True
Comparing and ordering Windows path objects is case-insensitive:
>>> PureWindowsPath('a') == PureWindowsPath('A')
True
Paths of different flavours always compare unequal, and cannot be ordered:
>>> PurePosixPath('a') == PureWindowsPath('a')
False
>>> PurePosixPath('a') < PureWindowsPath('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: PurePosixPath() < PureWindowsPath()
Paths compare unequal to, and are not orderable with instances of builtin
types (such as str
) and any other types.
Useful notations
The API tries to provide useful notations all the while avoiding magic. Some examples:
>>> p = Path('/home/antoine/pathlib/setup.py')
>>> p.name
'setup.py'
>>> p.suffix
'.py'
>>> p.root
'/'
>>> p.parts
('/', 'home', 'antoine', 'pathlib', 'setup.py')
>>> p.relative_to('/home/antoine')
PosixPath('pathlib/setup.py')
>>> p.exists()
True
Pure paths API
The philosophy of the PurePath
API is to provide a consistent array of
useful path manipulation operations, without exposing a hodge-podge of
functions like os.path
does.
Definitions
First a couple of conventions:
- All paths can have a drive and a root. For POSIX paths, the drive is always empty.
- A relative path has neither drive nor root.
- A POSIX path is absolute if it has a root. A Windows path is absolute if
it has both a drive and a root. A Windows UNC path (e.g.
\\host\share\myfile.txt
) always has a drive and a root (here,\\host\share
and\
, respectively). - A path which has either a drive or a root is said to be anchored. Its anchor is the concatenation of the drive and root. Under POSIX, “anchored” is the same as “absolute”.
Construction
We will present construction and joining together since they expose similar semantics.
The simplest way to construct a path is to pass it its string representation:
>>> PurePath('setup.py')
PurePosixPath('setup.py')
Extraneous path separators and "."
components are eliminated:
>>> PurePath('a///b/c/./d/')
PurePosixPath('a/b/c/d')
If you pass several arguments, they will be automatically joined:
>>> PurePath('docs', 'Makefile')
PurePosixPath('docs/Makefile')
Joining semantics are similar to os.path.join, in that anchored paths ignore the information from the previously joined components:
>>> PurePath('/etc', '/usr', 'bin')
PurePosixPath('/usr/bin')
However, with Windows paths, the drive is retained as necessary:
>>> PureWindowsPath('c:/foo', '/Windows')
PureWindowsPath('c:/Windows')
>>> PureWindowsPath('c:/foo', 'd:')
PureWindowsPath('d:')
Also, path separators are normalized to the platform default:
>>> PureWindowsPath('a/b') == PureWindowsPath('a\\b')
True
Extraneous path separators and "."
components are eliminated, but not
".."
components:
>>> PurePosixPath('a//b/./c/')
PurePosixPath('a/b/c')
>>> PurePosixPath('a/../b')
PurePosixPath('a/../b')
Multiple leading slashes are treated differently depending on the path flavour. They are always retained on Windows paths (because of the UNC notation):
>>> PureWindowsPath('//some/path')
PureWindowsPath('//some/path/')
On POSIX, they are collapsed except if there are exactly two leading slashes, which is a special case in the POSIX specification on pathname resolution (this is also necessary for Cygwin compatibility):
>>> PurePosixPath('///some/path')
PurePosixPath('/some/path')
>>> PurePosixPath('//some/path')
PurePosixPath('//some/path')
Calling the constructor without any argument creates a path object pointing
to the logical “current directory” (without looking up its absolute path,
which is the job of the cwd()
classmethod on concrete paths):
>>> PurePosixPath()
PurePosixPath('.')
Representing
To represent a path (e.g. to pass it to third-party libraries), just call
str()
on it:
>>> p = PurePath('/home/antoine/pathlib/setup.py')
>>> str(p)
'/home/antoine/pathlib/setup.py'
>>> p = PureWindowsPath('c:/windows')
>>> str(p)
'c:\\windows'
To force the string representation with forward slashes, use the as_posix()
method:
>>> p.as_posix()
'c:/windows'
To get the bytes representation (which might be useful under Unix systems),
call bytes()
on it, which internally uses os.fsencode()
:
>>> bytes(p)
b'/home/antoine/pathlib/setup.py'
To represent the path as a file:
URI, call the as_uri()
method:
>>> p = PurePosixPath('/etc/passwd')
>>> p.as_uri()
'file:///etc/passwd'
>>> p = PureWindowsPath('c:/Windows')
>>> p.as_uri()
'file:///c:/Windows'
The repr() of a path always uses forward slashes, even under Windows, for readability and to remind users that forward slashes are ok:
>>> p = PureWindowsPath('c:/Windows')
>>> p
PureWindowsPath('c:/Windows')
Properties
Several simple properties are provided on every path (each can be empty):
>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.drive
'c:'
>>> p.root
'\\'
>>> p.anchor
'c:\\'
>>> p.name
'pathlib.tar.gz'
>>> p.stem
'pathlib.tar'
>>> p.suffix
'.gz'
>>> p.suffixes
['.tar', '.gz']
Deriving new paths
Joining
A path can be joined with another using the /
operator:
>>> p = PurePosixPath('foo')
>>> p / 'bar'
PurePosixPath('foo/bar')
>>> p / PurePosixPath('bar')
PurePosixPath('foo/bar')
>>> 'bar' / p
PurePosixPath('bar/foo')
As with the constructor, multiple path components can be specified, either collapsed or separately:
>>> p / 'bar/xyzzy'
PurePosixPath('foo/bar/xyzzy')
>>> p / 'bar' / 'xyzzy'
PurePosixPath('foo/bar/xyzzy')
A joinpath() method is also provided, with the same behaviour:
>>> p.joinpath('Python')
PurePosixPath('foo/Python')
Changing the path’s final component
The with_name()
method returns a new path, with the name changed:
>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.with_name('setup.py')
PureWindowsPath('c:/Downloads/setup.py')
It fails with a ValueError
if the path doesn’t have an actual name:
>>> p = PureWindowsPath('c:/')
>>> p.with_name('setup.py')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 875, in with_name
raise ValueError("%r has an empty name" % (self,))
ValueError: PureWindowsPath('c:/') has an empty name
>>> p.name
''
The with_suffix()
method returns a new path with the suffix changed.
However, if the path has no suffix, the new suffix is added:
>>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
>>> p.with_suffix('.bz2')
PureWindowsPath('c:/Downloads/pathlib.tar.bz2')
>>> p = PureWindowsPath('README')
>>> p.with_suffix('.bz2')
PureWindowsPath('README.bz2')
Making the path relative
The relative_to()
method computes the relative difference of a path to
another:
>>> PurePosixPath('/usr/bin/python').relative_to('/usr')
PurePosixPath('bin/python')
ValueError is raised if the method cannot return a meaningful value:
>>> PurePosixPath('/usr/bin/python').relative_to('/etc')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "pathlib.py", line 926, in relative_to
.format(str(self), str(formatted)))
ValueError: '/usr/bin/python' does not start with '/etc'
Sequence-like access
The parts
property returns a tuple providing read-only sequence access
to a path’s components:
>>> p = PurePosixPath('/etc/init.d')
>>> p.parts
('/', 'etc', 'init.d')
Windows paths handle the drive and the root as a single path component:
>>> p = PureWindowsPath('c:/setup.py')
>>> p.parts
('c:\\', 'setup.py')
(separating them would be wrong, since C:
is not the parent of C:\\
).
The parent
property returns the logical parent of the path:
>>> p = PureWindowsPath('c:/python33/bin/python.exe')
>>> p.parent
PureWindowsPath('c:/python33/bin')
The parents
property returns an immutable sequence of the path’s
logical ancestors:
>>> p = PureWindowsPath('c:/python33/bin/python.exe')
>>> len(p.parents)
3
>>> p.parents[0]
PureWindowsPath('c:/python33/bin')
>>> p.parents[1]
PureWindowsPath('c:/python33')
>>> p.parents[2]
PureWindowsPath('c:/')
Querying
is_relative()
returns True if the path is relative (see definition
above), False otherwise.
is_reserved()
returns True if a Windows path is a reserved path such
as CON
or NUL
. It always returns False for POSIX paths.
match()
matches the path against a glob pattern. It operates on
individual parts and matches from the right:
>>> p = PurePosixPath('/usr/bin')
>>> p.match('/usr/b*')
True
>>> p.match('usr/b*')
True
>>> p.match('b*')
True
>>> p.match('/u*')
False
This behaviour respects the following expectations:
- A simple pattern such as “*.py” matches arbitrarily long paths as long as the last part matches, e.g. “/usr/foo/bar.py”.
- Longer patterns can be used as well for more complex matching, e.g. “/usr/foo/*.py” matches “/usr/foo/bar.py”.
Concrete paths API
In addition to the operations of the pure API, concrete paths provide additional methods which actually access the filesystem to query or mutate information.
Constructing
The classmethod cwd()
creates a path object pointing to the current
working directory in absolute form:
>>> Path.cwd()
PosixPath('/home/antoine/pathlib')
File metadata
The stat()
returns the file’s stat() result; similarly, lstat()
returns the file’s lstat() result (which is different iff the file is a
symbolic link):
>>> p.stat()
posix.stat_result(st_mode=33277, st_ino=7483155, st_dev=2053, st_nlink=1, st_uid=500, st_gid=500, st_size=928, st_atime=1343597970, st_mtime=1328287308, st_ctime=1343597964)
Higher-level methods help examine the kind of the file:
>>> p.exists()
True
>>> p.is_file()
True
>>> p.is_dir()
False
>>> p.is_symlink()
False
>>> p.is_socket()
False
>>> p.is_fifo()
False
>>> p.is_block_device()
False
>>> p.is_char_device()
False
The file owner and group names (rather than numeric ids) are queried through corresponding methods:
>>> p = Path('/etc/shadow')
>>> p.owner()
'root'
>>> p.group()
'shadow'
Path resolution
The resolve()
method makes a path absolute, resolving any symlink on
the way (like the POSIX realpath() call). It is the only operation which
will remove “..
” path components. On Windows, this method will also
take care to return the canonical path (with the right casing).
Directory walking
Simple (non-recursive) directory access is done by calling the iterdir() method, which returns an iterator over the child paths:
>>> p = Path('docs')
>>> for child in p.iterdir(): child
...
PosixPath('docs/conf.py')
PosixPath('docs/_templates')
PosixPath('docs/make.bat')
PosixPath('docs/index.rst')
PosixPath('docs/_build')
PosixPath('docs/_static')
PosixPath('docs/Makefile')
This allows simple filtering through list comprehensions:
>>> p = Path('.')
>>> [child for child in p.iterdir() if child.is_dir()]
[PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'), PosixPath('__pycache__'), PosixPath('build')]
Simple and recursive globbing is also provided:
>>> for child in p.glob('**/*.py'): child
...
PosixPath('test_pathlib.py')
PosixPath('setup.py')
PosixPath('pathlib.py')
PosixPath('docs/conf.py')
PosixPath('build/lib/pathlib.py')
File opening
The open()
method provides a file opening API similar to the builtin
open()
method:
>>> p = Path('setup.py')
>>> with p.open() as f: f.readline()
...
'#!/usr/bin/env python3\n'
Filesystem modification
Several common filesystem operations are provided as methods: touch()
,
mkdir()
, rename()
, replace()
, unlink()
, rmdir()
,
chmod()
, lchmod()
, symlink_to()
. More operations could be
provided, for example some of the functionality of the shutil module.
Detailed documentation of the proposed API can be found at the pathlib docs.
Discussion
Division operator
The division operator came out first in a poll about the path joining
operator. Initial versions of pathlib used square brackets
(i.e. __getitem__
) instead.
joinpath()
The joinpath() method was initially called join(), but several people objected that it could be confused with str.join() which has different semantics. Therefore, it was renamed to joinpath().
Case-sensitivity
Windows users consider filesystem paths to be case-insensitive and expect path objects to observe that characteristic, even though in some rare situations some foreign filesystem mounts may be case-sensitive under Windows.
In the words of one commenter,
“If glob(”*.py”) failed to find SETUP.PY on Windows, that would be a usability disaster”.—Paul Moore in https://mail.python.org/pipermail/python-dev/2013-April/125254.html
Copyright
This document has been placed into the public domain.
Source: https://github.com/python-discord/peps/blob/main/pep-0428.txt
Last modified: 2022-03-09 16:04:44 GMT